A Novel Approach for Hybrid of Adaptive Amplitude Non-linear Gradient Decent (aangd) and Complex Least Mean Square (clms) Algorithms for Smart Antennas
نویسندگان
چکیده
An adaptive beam former is a device, which is able to steer and modifies an array's beam pattern in order to enhance the reception of a desired signal, while simultaneously suppressing interfering signals through complex weight selection. However, the weight selection is a critical task to get the low Side Lobe Level (SLL) and Low Beam Width. One needs to have a low SLL and low beam width to reduce the antenna's energy radiation/reception ability in unintended directions. The weights can be chosen to minimize the SLL and to place nulls at certain angles. The convergence of the array output towards desired signal is also very important for a good signal processing tool of an adaptive beam former. A vast number of possible window functions are available to calculate the weights for Smart Antennas. From the analysis of many of these algorithms, it is observed that there is a compromise between HPBW and SLL. But in case of smart antennas, both of these parameters must have low values to get good performance. In our earlier work it is proposed that Complex Least Mean Square (CLMS) and Augmented Complex Least Mean Square ( ACLMS) algorithms gives low beam width and side lobe level in noisy environment. Another neural algorithm Adaptive Amplitude Non Linear Gradient Decent algorithm (AANGD) has the advantage of more number of control parameters over CLMS and ACLMS algorithms. In this paper the hybrid of CLMS and AANGD is presented and this novel hybrid algorithm has outperformed the hybrid algorithm of CLMS and ACLMS in the aspect of convergence towards the desired signal.
منابع مشابه
Adaptive Nonlinear Gradient Decent (angd) Algorithm for Smart Antennas
An adaptive beam former is a device, which is able to steers and modifies an array's beam pattern in order to enhance the reception of a desired signal, while simultaneously suppressing interfering signals through complex weight selection. However, the weight selection is a critical task to get the low Side Lobe Level (SLL) and Low Beam Width. It needs to have a low SLL and low beam width to re...
متن کاملHeuristic Based Adaptive Step Size Clms Algorithms for Smart Antennas
A smart antenna system combines multiple antenna elements with a signal processing capability to optimize its radiation and/or reception pattern automatically in response to the signal environment through complex weight selection. The weight selection process to get suitable Array factor with low Half Power Beam Width (HPBW) and Side Lobe Level (SLL) is a complex method. The aim of this task is...
متن کاملA Performance Analysis of CLMS and Augmented CLMS Algorithms for Smart Antennas
An adaptive beam former is a device, which is able to steer and modify an array's beam pattern in order to enhance the reception of a desired signal, while simultaneously suppressing interfering signals through complex weight selection. However, the weight selection is a critical task to get the low Side Lobe Level (SLL) and Low Beam Width. It needs to have a low SLL and low beam width to reduc...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملComplex dual channel estimation: Cost effective widely linear adaptive filtering
Widely linear estimation for complex-valued data allows for a unified treatment of both second order circular (proper) and non-circular (improper) signals. We propose the complex dual channel (CDC) estimation technique as an alternative to widely linear estimation to both gain further insights into complex valued minimum mean square error (MMSE) estimation and to design computationally efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013